Powering Your Life

Energy Storage Systems User Manual

OES-5, OES-10, OEX-10

Foxpower Technology Co., Ltd

Add: 3F, Building 2nd, Selen Tech-park, Tangjia Rd, Fenghuang Street, Guangming District, Shenzhen, Guangdong, China Tel: +86-755-23242321. Fax: +86-755-23242321 Email: sales@foxpowerups.com Website: www.foxpowerups.com Website: www.fox-power.com

F⁄XP@ШER

Powering Your Life

01 INTRODUCTION

1.1 System Introduction - Inteligent, Long-lasting and economical - All In One

Foxpower smart energy storage system is a high-tech storage system which combination of a PV system and a Foxpower LiFePO4 battery will allow you to cover avout 75% of your yearly energy requirement with selfproduced and clean energy. Since your energy is being generated on your roof and not by some anonymous energy provider you are more independent than before. So take your energy future into your own hands and reduce your energy costs to a minimum. The decision for a Foxpower smart energy storage system is also a decision for the highest standards in safety and quality. With storage sizes 3kW with 5kWh, 3kW with 10kWh or 5kW with 10kWh, the Foxpower smart energy storage system will power a detached house, a multi-family house.

Basic System Architecture

1.2 Features

- Split phase output
- Designed & engineered for small places

• MPPT solar input

Dimensions: 3 - 5kWh: 53/55/35 Dimensions: 5 - 10kWh: 88/55/35

• Auto Gen start (AGS) function

F⁄ЭХР©ШЕЯ

- Premium Guarantee
- 5 years for Battery and 3 years for inverter
- Battery priority to optimize solar use
- Ready for wind controller input

02 Installation

2.1 Installation Precaution

This hybrid energy storage system is designed for indoor use, please make sure the installation site meets below conditions:

- Not in direct sunlight
- Not in areas where highly flammable materials are stored.
- Not in potential explosive areas
- Not in the cool air directly
- Not near the television antenna or antenna cable.
- Not higher than altitude of about 2000 meters above sea level
- Not in environment of precipitation or humidity (>95%)

2.2 Connect all wires

Please AVOID direct sunligh, rain exposure, snow laying up during installation and operation. Before connecting all wires, please take off the metal cover by removing screws as shown below:

- IP63 protection
- Lifecycle 4500@80% DOD
- Wheels mounted
- Mobile APP monitoring

B-B

Powering Your Life

OES-10 and OEX-10

2.3 AC Input/Output Connection

• Before connecting to AC input power source, please install a separate AC breaker between system and AC input power source. This will ensure the system can be securely disconnected during maintenance and fully protected from over current of AC input.

F>XPOUER

• There are five terminal blocks with "AC Input" "AC Output", "DC Output", "PV Input" and "Wind Input" markings. Please do not misconnect input and output connectors.

All wiring must be performed by a qualified personnel. It is very important for system safety and efficient operation to use appropriate cable for AC input connection. To reduce risk of injury, please use the proper recommended cable as below.

Recommend AC input and AC output connection cables:

Model	Wiew size	cable(mm²)	Torque value
OES-5	10 AWG	5	1.2Nm
OES-10	8 AWG	8	1.2Nm
OEX-10	8 AWG	8	1.2Nm

Table 1

Please follow below steps to implement AC input/output connection:

1. Please choose a suitable AC input cable with correct connerctor which can well fit into the AC input terminals (see table 1)

2. Use a suitable screwdriver to unscrew the bolts and fit the AC input connectors in, then fasten the bolt by the screwdriver, make sure the bolts are tightened with torque of 1.2N.M.

Be sure that AC power source is disconnected before attempting to wire it to the unit.

3. Make sure the wires are securely connected.

2.4 PV connection

Before connecting to PV modules, please install a separately DC circuit breaker between system and PV modules. It is very important for system safety and efficient operation to use appropriate cable for PV module connection. To reduce risk of injury, please use the proper reccommended cable size as below.

Model	Wire size cable(mm		Torque value
OES-5/OES-10/OEX-10	10 AWG	5	1.2Nm

Table 2

To avoid any malfunction, do not connect any PV modules with possible current leakage to the system. For example, grounded PV modules will cause current leakage to the system. When using PV modules, please be sure NO grounding.

It is requested to use PV junction box with surge protection. Otherwise, it will cause damage on system when lightning occurs on PV modules.

2.4.1 PV modules selection:

When selection proper PV modules, please be sure to consider below parameters: 1) Open circuit voltage (Voc) of PV modules not exceeds max. PV array open circuit voltage of system.

2) Open circuit voltage (Voc) of PV modules should be higher than min. start voltage.

System Model	OES-5	OES-10	OEX-10
PV Input Voltage	50-108Vdc	50-108Vdc	50-108Vdc
Max Open Circuit Voltage	150Vdc	150Vdc	150Vdc
Max PV Input Power	2080W	4160W	4160W
No. of MPPT Trackers	1	2	2

2.4.2 PV modules wire connection

Please follow below steps to implement PV module connection:

1. Please choose a suitable PV input cable with correct connerctor which can well fit into the PV input terminals

2. Check correct polarity of wire connection from PV modules and PV input connectors. Then, connect positive pole (+) of connection wire to positive pole (+) of PV input connector. Connect negative pole (-) of connection wire to negative pole (-) of PV input connector.

3. Use a suitable screwdriver to unscrew the bolts and fit the PV input connectors in, then fasten the bolt by the screwdriver, make sure the bolts are tightened with torque of 1.2N.M.

F⁽)XP@UER

Powering Your Life

2.6 Wind Controller connection

F©XP©UER

03 Operation

3.1 Close All Breakers

Make sure all line/wires connection correctly and close all breakers in rear panel. Showing as below

3.2 Power On/Off

Once the unit has been properly installed and the power cables are connected, simply press On/Off button to turn on the unit.

FXPOUER

Powering Your Life

3.3 Main Screen

The LCD is touchscreen, below screen shows the overall information of the system.

(1) The system status: It will display Normal, Alarm and so on based on the system status.

- 2 Display the system time
- 3 Grid icon, click it go to the inverter meter
- 4 The real input voltage from grid
- (5) The time icon, click this icon go to the time synchronizated of the system

F[©]XP©ШER

6 The real input power by solar panel

⑦ Solar icon, click this icon will go to the solar meter which showing details of solar

8 Solar generate power details. TD-kWh: showing today energy generated by

solar; TT-kWh: showing total energy generated by solar.

(9) Inverter icon, click this icon will show the details of inverter

10 The inverter output real power

(1) Battery icon. Click this icon will go to the details of the battery information

12 Real battery information.

(3) DC load icon. Click this icon will go to the details of the DC load

^(A) DC load details. Showing the DC load consumption, today load consumption (TD–kWh) and Total load consumption (TT–kWh)

(5) You can scan the QC code to get the model name, series number and go to our webiste

3.4 Meter Screen

3.4.1 Solar meter

Click the solar icon in main screen go to the solar meter which showing solar and load information. Shown as below.

Total PV power, Total PV current.
 DC load voltage, DC load current, DC load power
 Solar panel Generation.
 DC load consumption
 Click this icon go to the summary of the solar data
 Click this icon go to MPPT meter
 Total: 2 --> the number means MPPT number. 2 means 2 MPPTs

F⁄XP©ШER

Powering Your Life

① PV input voltage, PV current, PV power, PV charge voltage, PV charge current
② DC load voltage, DC load current, DC load power, Unit temp
③ Solar panel Generation.
④ DC load consumption
⑤ Click or to go to differnet ID MPPT informatoin
⑥ Click this icon go to solar SUM meter
⑦ ID: 1--> ID 1 MPPT

3.4.2 Inverter meter

Click the inverter icon in main screen to the inverter meter. Shown as below.

3.4.3 Battery meter

Click the battery icon in main screen to the battery meter. Shown as below.

F[©]XP©UER

Click the "ALL DATA" icon in battery meter screen to the battery all data meter. Shown as below.

N	Main Screen			Battery meter: all data					1	otal:1	
D	Vol	Amp	SOC	Rem-C	Cyc-T	Max-V	Min-V	Max-T	Min-T	Status	
0	52.3	-27.1	84.2	88.4	2	3.30	3.28	32.0	31.5	0000	SUM
					2						DATA
											ALL DATA
											CELL DATA

The quantity of battery pack in the system
 The battery pack details information:
 ID: The pack ID in the system
 Yol: The pack voltage in the system
 Amp: The battery pack current
 SOC: The battery pack SOC
 Rem-C: The remain capacity of battery pack
 Cyc-T: The battery cell max voltage in the pack
 Max-V: The battery cell max voltage in the pack
 Max-T: The battery cell max termperture in the pack
 Min-T: the battery cell min termperture in the pack
 Status: the pack working status

Click the "CELL DATA" icon in battery meter screen or press the Down or UP button to the battery cell data meter. Shown as below.

Main Screen	Battery	meter:cell d	ata 🕦 II	D:0	1 This is all cells data of the ID: 0 battery pack
Rated Cap-Ah:105 Current Cap-Ah:88.4 Current SOC %:84.2 Voltage V:52.3 Current A:-27.1 2 Chg Time-h:- Dischg Time-h:3.1 Cycle Times:2 Status:0000	C1: 3221 C2: 3261 C3: 3261 C4: 3260 C5: 3259 C6: 3260 C7: 3261 C8: 3269 OVP-T: 0	C9: 3258 C10: 3256 C11: 3258 C12: 3261 C13: 3265 C14: 3266 C15: 3265 C16: 3272 OCP-T: 0	Max V: 3305 Min V: 3273 Temp 1: 31.9 Temp 2: 32.4 Temp 3: 31.5 Temp 4: 31.9 Max T: 32.4 Min T: 31.5 OTP-T: 0	4	 (2) The ID 0 battery pack information (3) All cells data in ID 0 battery pack (4) UP or Down to Change the battery pack ID to show another pack cells information.

4. Other Features

4.1 DIP Switch Function setting

Table 4 Dip Switch Function Setting

DIP switch No.	Switch Function	Pisition:0	Position:1	
SW1	Low battery trip point	46.0Vdc	48.0Vdc	
Sw2	AC Input Range	184-253Vac(230Vac input) 100-135Vac(120Vac input)	140-270Vac(230Vac input) 90-135Vac(120Vac input)	
Sw3	Switch Model select (Power save mode setting)	Night charger function	Detect load per 3 secs	
Sw4	Frequency switch(output frequency)	50Hz	60Hz	
Sw5	Battery/AC priority setting	Utility priority	Battery(solar)priority	

SW1: Low Battery Trip Volt:

The Low Battery Trip Volt is set at 46.0Vdc by typical deep cycle lead acid battery. It can be customized to 48Vdc using SW1 for sealed car battery, this is to prevent batteries from over-discharging while there is only a small load applied on the system.

SW2: AC Input Range:

There are different acceptable AC input ranges for different kinds of loads. For some relatively sensitive electronic devices, a narrow input range of 184-253V (100-135Vac for 120Vac model) is required to protect them.

While for some resistive loads which work in a wide voltage range, the input AC range can be customized to 140-270VAC (90-135Vac for 120Vac model), this helps to power loads with the most AC input power without frequent switches to the battery bank.

In order to make the system accept dirty power from a generator, when the SW2 is switched to position "1", the system will bypass an AC input with a wide voltage and frequency (40Hz-70Hz for 50Hz/60Hz).

Accordingly, the AC charger will also work in a wide voltage and frequency range (43Hz-67Hz for 50Hz/60Hz). This will avoid frequent switches between battery and generator. But some sensitive loads will suffer from the low quality power.

SW3: Power Saver Auto Setting :

In Power Saver Mode, when the SW3 is switched to position "0", system will work in Unit Off Charging mode, it will stay in standby mode without sensing loads. It won't output any power even if a load is turned on. The system will not perform any function and only stay idle in this mode. When a qualified AC input present, it will switch to AC input power to charge the battery and supply the load at the same time. When the SW3 is switched to position "0", the system is initially in standby mode and sends a pulse to detect the presence of a load every 3 seconds. Each pulse lasts for 250ms. The system will remain in standby mode until a load has been detected. Then it will wake up from standby mode and start to inverter electricity from the battery bank to supply the load.

SW4: Frequency Switch:

The output frequency of the system can be set at either 50Hz or 60Hz by Sw4.

SW5: Solar Mode/AC Mode Priority:

Our system is designed with AC priority by default. This means, when AC input is present, the battery will be charged first, and the inverter will transfer the input AC to power the load. Only when the AC input is stable for a continuous period of 15 days, the system will start a battery inverting cycle to protect the battery. After 1 normal charging cycle ac through put will be restored. The AC Priority and Battery Priority switch is SW5. When you choose battery priority, the system will inverting from battery despite the AC input. Only when the battery voltage is reaches low voltage alarm point(10.5V for 12V), the system transfers to AC Input, charge battery, and switch back to battery when battery is charged full. This function is mainly for wind/solar systems taking utility power as back up

4.2 Automatic Generator Star (AGS)

The system can start up generator when battery voltage goes low. When the system goes to low battery alarm, it can send a signal to start a generator and turn the generator off after battery charging is finished. The auto gen start feature will only work with generators which have automatic starting capability. The generator must have start and stop controls [i.e., an electric starter and electric choke (for gasoline units)], and the safety sensors to be able to start and stop automatically. There is an open/close relay that will short circuit the positive and negative cables from a generator start control. The input DC voltage can vary, but the max current the relay can carry is 16Amp. The Auto Generator Start terminal pins are not polarized. In addition, these two pins can also be used as dry contacts to send out "Low Battery Voltage" signal to an external alarm device.

Powering Your Life

4.4 APP Monitoring

WIFI or GPRS Module

English Version

Spanish Version

F©XP©UER

4.4 Datasheet

	OES-5	OES-10	OEX-10
Rated energy capacity	5.12kWh	10.24kWh	10.24kWh
Battery Rated Capacity	100Ah	200Ah	200Ah
Rated charge voltage		56.0Vdc±0.4Vdc	
Max charge voltage		56.8Vdc±0.4Vdc	
Overcharge protection		58.4Vdc±0.4Vdc	
Battey Type		LiFePO4	
AC input voltage range	184-253Vac(UF	PS mode) or 140-27	0Vac(Gen mode)
Max. charging current(A)	50A	100A	100A
Max. discharging current(A)	100A	200A	200A
Max PV input power	2080W	41600W	41600W
PV input voltage	50V-108V	50V-108V	50V-108V
Max PV open Circuit Voltage	150V	150V	150V
AC Output			
Rated AC output power	3kW	3kW	5kW
Surge Rating(20S)	9kW	9kW	15kW
Capable of starting electric motor	3HP	3HP	5HP
Output waveform		Pure sine wave	
Nominal efficiency		>91%(Peak)	
Line Mode efficiency		>95%	
Output voltage	120Vac(H	I-N)/240Vac(H-H) \$	Split phase
Output frequency	50	/60Hz auto detecta	able
Grid type		Split phase	
Output voltage regulation		±10% RMS	
Typical transfer time		10ms (Max)	
THD		<10%	
General			
Cooling		Fan Cooling	
Weight(approximate)	80kg(176lb)	100kg(220lb)	110kg(242lb)
Dimension H/W/D(approximate)	55x53x35cm 22"x21"x14"	55x88x35cm 22"x35"x14"	55x88x35cm 22"x35"x14"
Shipping Weight(approximate)	90kg(198lb)	120kg(264lb)	130kg(286lb)
Shipping Dimension H/W/D(approximate)	80/70/50cm 31.5"x27.5"x20"	80/110/50cm 31.5"x43.5"x20"	80/110/50cm 31.5"x43.5"x20'
Protections	short circuit,ove	er voltage,over cu	rrent,over charge

Powering Your Life

5. Troubleshooting Guide

Symptom	Possible Cause	Recommended Solution
System will not turn on	Batteries are not connected,	Check the batteries and
during intial power up	loose battery-side	cable connections. Check
	connections	DC fuse and breaker
	Low battery voltage	Charge the battery
No AC output voltage and	System has been manually	Press the switch to power
no Indicator lights on	transitioned to OFF mode	the system
AC output voltage is low	Low battery	Check the condition of the
and the system turns loads		batteries and recharge if
OFF in a short time		possible
Charger is inoperative and	AC voltage has dropped	Check the AC voltage for
unit will not accept AC	out-of-tolerance	proper voltage and
Charger is supplying a lower	Low AC input voltage	Source qualified AC power
charge rate		
	Loose battery or AC input	Check all DC/AC
	connections	connections
Charger turns OFF while	High AC input voltages from	Load the generator down
charging from a generator	the generator	with a heavy load.
		Turn the generator output
		voltage down
Sensitive loads turns off	System's low voltage trip	Choose narrow AC voltage
temporarily when	voltage may be too low to	in the DIP switch, or install a
transferring between grid	sustain certain loads	UPS if possible
Noise from transformer/case *	Applying specific loads such as hair drier	Remove the loads

* The reason for the noise from transformer and/or case

When in inverter mode and the transformer and/or case of the system sometimes may vibrate and make noise.

The noise may come from transformer. According to the characteristics of our system, there is one type of load which will most likely to cause rattles of transformer, that is a half-wave load, load that uses only a half cycle of the power (see figure 1). This trends to cause imbalance of magnetic field of transformer, reducing its rated working freq from 20KHz to, say, maybe 15KHz (it varies according to different loads). This way, the freq of noise falls exactly into the range (200Hz-20KHz) that human ear can sense.

FDXPOUER

The most common load of such kind is hair drier. If the noise comes from case. Normally when loaded with inductive loads, the magnetic field generated by transformer keeps attracting or releasing the steel case at a specific freq, this may also cause noise. Reducing the load power or using an inverter with bigger capacity will normally solve this problem. The noise will not do any harm to the inverter or the loads.

6. Sychronizate Time as local time

Click the Calender icon to sychronizate the time as local time zone. Enter the year, month, day, Hour, Minute and second in order to sychronizate the local time in the system.

Foxpower Technology Co., Ltd

Add: 3F, Building 2nd, Selen Tech-park, Tangjia Rd, Fenghuang Street, Guangming District, Shenzhen, Tel: +86-755-23242321. Fax: +86-755-23242321 Email: sales@foxpowerups.com Website: www.foxpowerups.com Website: www.fox-power.com